SCIC Annual Golf Trophy Challenge 2015

Industry Briefing Session On Bunker Mass Flow Metering Technical Reference

Responsible Care Conference - “Revitalise the Spirit of Responsible Care”
The SCIC held its 6th consecutive Annual Golf Trophy Challenge on 28 August at Singapore Island Country Club and well attended with 80 golfers and diners. As one of the key networking events organised by SCIC for members and non-members, the event proved to be a huge success with participants hailing from 18 companies.

The event commenced at 10 am with registration followed by a light buffet lunch where the enthusiastic golfers had the opportunity to interact with one another. The shotgun tournament began at 1 pm and continued until 6pm.

After the game, the golfers proceeded for the networking cocktail reception and followed by the dinner session. The prizes for the novelty games and lucky draws were presented during the dinner session.

This year’s champion, Mr Jonathan Foo was presented with a $300 Capitalmall Voucher, a brand new golf bag and a crystal trophy sponsored by Pride-Chem Industries Pte Ltd. His name would be engraved on the Golf Challenge Trophy as well.

SCIC would like to take this opportunity to thank our sponsors, namely David Lim and Partners, Pride-Chem Industries Pte Ltd, Singapore Oxygen Air Liquide Pte Ltd and Stone Forest Payroll Serve for their generous support for making this event a huge success. SCIC would also like to thank the organising committee, golfers and diners for their active participation in this event.
One of the greatest threats to process plant safety is Human Error. Human error is any human action (or inaction) that deviates from its primary intention and expectation, in achieving the desired outcome. Human error includes lapses and intentional violations that may contribute to accidents.

A Learning & Sharing Session – “Role of Human Error in Process Safety”, organised by the SCIC’s Process and Engineering Committee, was held on 28 July 2015 and attended by 16 industry practitioners. The session provided the participants with the understanding on how human error leads to accidents through learning from real case studies in the Chemical Industry. The 1hr interactive group activity helped participants reflect on how to prevent similar cases from occurring and share the possible improvements to be made.

Reading materials: WSHC – Case Studies for Chemical Industry

Air Products – unwavering commitment to safety

Winner of the SCIC 2014 Responsible Care “Excellence” Award

For 75 years, Air Products has been committed to be a leader in safety performance. The 2014 Responsible Care “Excellence” Award in Product Stewardship Code – which is presented only to companies with consistent and excellent safety performance for at least six years – is a solid testament of our safety accomplishment.

To learn more about how Air Products’ experience and proven safety records could bring you peace of mind, call +65 64942296/+65 64942173, email to MYSGMKT@airproducts.com or visit airproducts.com.sg.
The 20th AMEICC-WGCI (ASEAN Economic Ministers (AEM) Ministry of Economic, Trade and Industry (METI), Economic and Industrial Cooperation Committee – Working Group for Chemical Industry) Meeting was held on 24 and 25 June 2015 at Siem Reap, Cambodia.

Comprising government and industry representatives from ASEAN Member States (AMSs) and Japan, this is an annual meeting that provides a good platform for exchange of information on the developments of the respective ASEAN chemical industries.

The 2-day meeting was updated on the following:

- Overall AMEICC activities
- Update on Current Status of ASEAN-Japan Chemical Safety Database (AJCSD)
- Current State of Global Chemical Industry
- Chemical Safety Management Policies in ASEAN and Japan
- Other Chemical Safety issues surrounding the chemical industries

The next AMEICC WG-CI Meeting will be held in Philippines in 2016, subject to further confirmation.

Start building today!
Big and small businesses need to enhance their capabilities to compete and grow. SMEs can use SPRING Singapore’s Capability Development Grant to help them grow their business.

Visit www.spring.gov.sg/CDG or call EnterpriseOne at 6898 1800 to learn more.
DO YOU KNOW

THE “NOBODY GETS HURT” MINDSET IN INFINEUM SINGAPORE PTE LTD

It takes a combination of technology, processes and human vigilance to turn a plant with hazardous chemicals into a safe workplace.

The Infineum Singapore plant has designed a workplace safety and health (WSH) system that relies on all those parameters to build a “Nobody Gets Hurt” culture.

The one best practice that plant colleagues are proud of and is one activity that engages every individual to do just before they embark on any task is the Last Minute Risk Assessment (LMRA). Infineum believes that the Last Minute Risk Assessment (LMRA) is a key component of our safety program and supports our goal of “Nobody Gets Hurt”.

LMRA gets each colleague and contractor to stop and think about the risk involved in a task, what could go wrong and take action to mitigate the risks:

- just before starting a job
- throughout the job
- when conditions change
- when the job is not going as planned

Maintenance and contractor tasks requiring work permits will have a LMRA checklist to be completed prior to commencing work at the job site. LMRA field verification is part of work permit audits and observations.

LMRA memory joggers are used for routine Process, Laboratory, Office and Workshop tasks.

Technology plays a big part in the safe production, handling and storage of hazardous materials at Infineum.

The plant is highly automated with layers of safety protection using detectors and an alarm management system. Cameras are widely deployed to provide additional eyes and live footage is monitored 24/7 at a centralised control room.

Employees are encouraged to report risky practices or behaviours. A critical aspect of the WSH system is the commitment of management, employees and colleagues to the ‘Nobody Gets Hurt’ culture.”

In addition to making sure the workplace is safe, Infineum also runs employee wellness programs. Talks by medical and health professionals are conducted regularly to increase awareness of healthy living. There are fruit days, fitness days and games days to promote a healthy lifestyle.

At Infineum, Safety is a way of life. We comply with a structured safety system that delivers industry-leading results, but we are never complacent. Receiving the prestigious WSH Excellence Award for the 17th straight year is an honour of which we’re all exceptionally proud.

Contributed by: Infineum Singapore Pte Ltd

ENGAGE THE BRAIN IN LMRA BEFORE STARTING A JOB

NOBODY GETS HURT

- Any potential hazards?
- What can go wrong?
- Could i hurt myself?
- Am i taking actions to ensure a safe job?
We are deeply honoured to have received numerous awards relating to quality corporate governance over the years, particularly at the prestigious Singapore Corporate Awards (“SCA”). The SCA recognises and promotes excellence in corporate governance and since its inception in 2005, we have received at least one award in seven out of the last ten years. At this year’s SCA, we marked a truly significant milestone by being accorded four awards for the first time in a single year.

The accolades we received at the SCA 2015 were for the Best Managed Board (Gold), Best Chief Financial Officer Award, Best Annual Report (Silver) and Best Investor Relations Award (Bronze) in the “less than $300 million market capitalisation” category.

In addition, we were also ranked in the top 10 percentile of the Governance and Transparency Index (“GTI”) 2015, an annual assessment of the financial transparency of listed companies in Singapore.

These accolades attest to the rigorous efforts we have invested in setting clear lines of governance and accountability.

CORPORATE GOVERNANCE: AN INTEGRAL PART OF MEGACHEM’S CORPORATE STRATEGY

As a specialty chemical solutions provider, Megachem focuses its efforts beyond operational capabilities and profit generation. Corporate governance is an important aspect necessary in balancing the interests of Megachem’s many stakeholders, including our shareholders whom we see as partners. It is paramount, especially since Megachem is a publicly listed company. We believe governance is a key pillar of any organisation’s strategy for sustainability, along with corporate social responsibility and minimising environmental impacts.

Most importantly, Megachem cultivates a strong set of core corporate values – Integrity, Trust, Transparency and Accountability – upon which our corporate governance strategy is developed. These values encapsulate Megachem’s corporate culture and its spirit of governance.

The benefits of upholding good governance practices are multifold. Being transparent spurs one to make better business decisions that can stand the test of scrutiny by stakeholders. While observation of sound governance principles does not automatically guarantee good financial performance, it enhances a company’s reputation and allows a company to build strong business relationships based on trust and confidence. We believe these are hallmarks of a sustainable business that have placed Megachem in good stead over the years.
Changes are inevitable in chemical industry and in any other manufacturing sector. These changes may be required for various reasons like technological advancements, productivity improvement, age of installations or for enhancing the safety and health conditions. Before execution of such changes, it is essential to evaluate its impact on safe operations. A key requirement to accomplish such review is a robust ‘Management of Change’ process within the organisation, and such system should clearly define expectations and responsibilities.

WHAT IS MANAGEMENT OF CHANGE?
Management of change (MOC) is a process for evaluating and controlling modifications to facility’s design, operation or activities – ‘prior to its implementation’ – to make it certain that no new hazards are introduced and risk of hazards to employees, the public, or the environment is not unknowingly increased.

TYPE OF CHANGES
- Technology Changes
 Any changes in process technology supplied by process licensors fall under this type of change. Assessing the impact on process chemistry like accumulation of heat in exothermic reactions, change in reaction rates, potential run away/side reactions are critical check points for this change category.
 Examples,
 - Changing operating temperature/pressure beyond operating envelope
 - Introduction of new corrosion inhibitor or demulsifier
- Equipment Changes
 Change in equipment with upgraded material of construction or equipment design change for better efficiency or corrosion resistance are examples of this change category. Reviewing compatibility issues, proper update of relevant design documents are critical check points for this change category.
- Procedural Changes
 Change in established operating, maintenance or inspection procedures, change in site safety procedures qualify under this category of change. Prompt review and communication to all concerned are critical check points for this change category.
 Examples,
 - Change in permitted exposure limits for toxic gas in safety procedure
 - Increase in reaction residence time in plant operating procedure
- Personnel Changes
 Corporate merger or acquisitions, change in task allocation or job responsibilities, loss of key personnel are changes that fall under this category. Assessing the loss of Process Safety competence and, effective ‘Hand-Over Take-Over’ are critical check points for this change category.
 Examples,
 - Reducing number of operators per shift
 - Resignation of key personnel / subject matter expert in plant

FLIXBOROUGH INCIDENT: FAILURE TO MANAGE CHANGE
On June 1, 1974 an explosion killed 28 people and injured 89. Explosion occurred due to leakage of 60,000 pounds of hot cyclohexane. The reactor no 5, one of a series of reactors, developed a leak two months before the explosion. In order to have continued production, it was decided to bypass the reactor. Temporary bypass line of 20” was used in absence of 28” nominal bore pipe. This did not undergo proper design or detailed engineering. After operation for two months, the bypass line gave away, resulting in release of hot cyclohexane and subsequent Vapour Cloud Explosion.

Organisation may choose to automate the process using IT platform. However, it is essential that each step defined in the process is followed by all involved. Each step of the process signifies overall effectiveness of the system. Hands-on training, listing deliverables and expectation of each step are to be ensured for consistent and effective review.

Change is an inevitable process in the industry; effective Management of Change process can play an essential role in avoiding process safety incident while executing changes. Management of Change is an extremely important process and interacts closely with other elements like process safety information, training, and pre-start up safety reviews.

Organisation aiming for excellence in Process Safety need to allocate appropriate resources for effective ‘Management of Change’ process.

KPIs may be used for checking the health of ‘Management of Change Process’. Monitoring and review of KPIs by senior management can help in identifying gaps and focus areas.
MANAGEMENT OF CHANGE – “LAYERED REVIEW BEFORE CHANGE EXECUTION”

REPLACEMENT IN KIND VS. CHANGES WHICH COULD INTRODUCE POTENTIAL RISKS

<table>
<thead>
<tr>
<th>Replacement in Kind</th>
<th>Potential Change</th>
<th>Potential Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replacement of reactor spent catalyst with fresh catalyst having same specification and maintaining similar catalyst bed height</td>
<td>• Increase in Nickel (Ni) content of catalyst</td>
<td>• Potential for Nickel Carbonyl NiCO4 formation (Toxic)</td>
</tr>
<tr>
<td></td>
<td>• Increasing catalyst bed height</td>
<td>• Potential channeling of process material</td>
</tr>
<tr>
<td>Replacement of old pipe with new one having same specification e.g. Similar metallurgy, thickness, dimension, pressure rating</td>
<td>• Change in pipe diameter</td>
<td>• Increased Velocities</td>
</tr>
<tr>
<td></td>
<td>• Change Schedule from 40 to 80</td>
<td>• Change in pipe flexibility analysis</td>
</tr>
<tr>
<td>Change in layout, fonts or preamble or Correction of grammatical errors in operating procedures</td>
<td>• Change in Safe Operating Limits in procedure</td>
<td>• Excursion beyond design limits</td>
</tr>
<tr>
<td></td>
<td>• Change in chronological order of steps for steam line up in exchanger</td>
<td>• Wrong line up leading to thermal stresses on exchanger shell/tube</td>
</tr>
<tr>
<td>Change in shift groups of process operators as part of organogram re-structure</td>
<td>• Elimination of operator duty position for manpower optimisation</td>
<td>• Reduction in operational vigilance during plant rounds</td>
</tr>
<tr>
<td></td>
<td>• Resignation of experienced and skilled employee</td>
<td>• Loss of process safety competency in workforce</td>
</tr>
</tbody>
</table>

MANAGEMENT OF CHANGE PROCESS & EXAMPLE KPIs

Identification
- Evaluation of Proposal
- Change or Replacement in Kind?

Evaluation
- Evaluation of Hazard Impacts on overall process
- Process Hazard Analysis / HAZOP

Review
- Multidisciplinary Review by experts
- Pre Start up Reviews before implementation

Implementation
- Execution of change in field
- Performing hardware/software changes

Communication
- Training on implemented change
- Communication of change to all concerned

Documentation
- Updating relevant documents (P&IDs, Procedures Datasheets, Design basis, Cause & Effects etc.)

Closeout
- Capturing benefits achieved (cost benefit analysis)
- Preservation for future records

Key Performance Indicators (KPIs)

<table>
<thead>
<tr>
<th>KPI</th>
<th>Healthy Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changes wrongly identified as ‘Replacement in Kind’ (Number) not routed to MOC Process</td>
<td>📉งาม</td>
</tr>
<tr>
<td>MOC PHA or HAZOP recommendation pending for closure (Number)</td>
<td>📉งาม</td>
</tr>
<tr>
<td>MOC Pre Start up Safety Review Recommendations pending for closure (Number)</td>
<td>📉งาม</td>
</tr>
<tr>
<td>Number of changes approved but pending for implementation (Number)</td>
<td>📉งาม</td>
</tr>
<tr>
<td>Completion of training on MOC (Scope Vs. Actual) (%)</td>
<td>📉งาม</td>
</tr>
<tr>
<td>Documents updated post change implementation (Scope Vs. Actual) (%)</td>
<td>📉งาม</td>
</tr>
<tr>
<td>Number of MOCs pending for close out (Number)</td>
<td>📉งาม</td>
</tr>
</tbody>
</table>

Contributed by SCIC process and Engineering Committee
For shipments of dangerous goods by airfreight the shipper is responsible for all aspects of the packing of dangerous goods in full compliance with the prevailing IATA DG Regulations. The prevailing IATA DG Regulations for 2015 is the 56th Edition.

In this article we focus on the main points which need to be considered when preparing a dangerous goods shipment for airfreight. For the exact details though, the shipper must refer to the applicable IATA DG Regulations at all times.

When transporting dangerous goods by air conditions normal to air transport have to be always considered. Among these are:

- Temperature
- Pressure
- Vibrations

Based on these transport characteristics, there are specific as well as general packaging requirements laid out to ensure the safe transport of dangerous goods by air.

The specific packaging requirements impose on the shipper the following requirements:

- Comply with the set of packing requirements appropriate to the type of packaging to be used
- Use only packaging permitted by the applicable packaging instructions specified in the List of Dangerous Goods
- For all packages, restrict the overall quantity per package to the limits specified in the List of Dangerous Goods or to the design limit for the package whichever is more restrictive
- Assemble and secure all components of the packaging exactly in the manner intended
- Ensure that external surfaces of assembled packages are clean of contamination
- Ensure that the shippers’ responsibilities for packing are completely fulfilled when the package is presented to the operator for shipment

In addition to those requirements, compliance with the applicable regulation is also required for dangerous goods shipments with regard to:

- Use of freight containers and unit load devices (ULD)
- Package/Overpack Re-use
- Overpacks
- Salvage Packaging
- Portable Tanks
- etc.

Apart from the specific packaging requirements, there are further general packaging requirements which must be met. These relate to the packaging quality, performance test requirements, compatibility requirements, packing restrictions of different dangerous goods in One Outer Package, Inner Packaging as well as requirements concerning ability of venting of packages, orientation, minimum size, etc.

The respective applicable Packing Instructions (PI) for each dangerous goods can be found in the Dangerous Goods List in column ‘I’ for Passenger and Cargo Aircrafts with the maximum net quantity per package shown in column ‘J’.

For shipments which are transported under Limited Quantity (Y) the respective applicable Packing Instructions (PI) for each dangerous goods can be found in the Dangerous Goods List in column ‘G’ for Passenger and Cargo Aircrafts with the maximum net quantity per package shown in column ‘H’.

Each Packing instruction shows, where applicable, the acceptable single and combination packaging.

Example:

There are several different inner and outer packaging which can be used in air transport of dangerous goods.

It needs to be noted that there is also the possibility that additional packing requirements may impose a higher standard of packing than it would normally apply to the actual packing group.

In conclusion for this overview, it needs to be noted that when preparing dangerous goods shipments by air reference must always be made to the prevailing IATA DG Regulations to ensure full compliance. Apart from the packaging requirements, this also applies to the mandatory training requirements, as stipulated in section 1.5 of the IATA DG Regulations for personnel identified as shippers, packers and freight forwarders who must be trained or for who training compliance must be verified prior to a person executing any such duties within the supply-chain.

Contributed by SCIC L&D Committee
PEOPLE

SINGAPORE’S NON-RESIDENT AMBASSADOR TO THE HASHEMITE KINGDOM OF JORDAN

SCIC would like to congratulate SCIC Board member, Mr Shamsher Zaman on his appointment as Singapore’s Non-Resident Ambassador to the Hashemite Kingdom of Jordan.

WELCOMING NEW SCIC MEMBERS

SCIC would like to welcome the following companies:

RHENUS LOGISTICS ASIA PACIFIC PTE LTD
In Singapore, Rhenus Logistics focuses on logistics solutions exceeding industry standards in excellence while maintaining speed and efficiency in operations. Rhenus Logistics Singapore offers a variety of services, including air freight, sea freight, cross border trucking, project cargo for among others the Oil & Gas, Mining and Chemical Industry, customs clearance, domestic distribution and more.

www.rhenus.com

MARKING SERVICES INC. (S) PTE LTD
“At MSI, we are your single source of accountability for all aspects of identification labeling. We don’t simply create durable industrial-grade labels; we enhance the overall efficiency of chemical plants by providing engineered process labeling and P&ID’s update services that effectively communicate valuable line tracing information to commissioners, safety personnel, and operators.”

www.markserv.com

HELM ASIA PTE LTD
HELM AG, established in Hamburg in 1900, has been engaged in global marketing and distribution of chemicals for over 114 years. With 13 offices in Asia and a regional Head Office, HELM ASIA, in Singapore, our experienced marketing team with focal point in industrial chemicals offers individual customer relationship management on site.

www.helmasia.com

HAZCHEM LOGISTICS MANAGEMENT
HazChem Logistics Management (HazChem) is an Integrated Logistics Service Provider predominantly specialised for Hazardous Chemicals and Dangerous Goods for the Chemical and Pharmaceutical industries with a strong commitment to Safety and Responsible Care.

Services include Air and Ocean Freight, DG Warehousing, Customs Clearance, DG Packaging, Road Transportation and Distribution.

www.hazchemlogistics.com

HACH COMPANY
Water analysis has to be right. For over 60 years, Hach has been at the crest of the industry — finding solutions that help you best manage water. Our analytical instruments and reagents are used to test water quality in industries and markets — from around the corner, to around the globe.

www.sea.hach.com
INDUSTRY BRIEFING SESSION ON BUNKER MASS FLOW METERING TECHNICAL REFERENCE

The Industry Briefing Session on Bunker Mass Flow Metering Technical Reference was held on 23 July 2015 to inform the industry of the upcoming standard which covers the Coriolis mass flow metering system requirements for metering system qualification, installation, testing, procedures and documentation for bunker custody transfer.

The briefing session was well attended by approximately 200 participants from bunker surveying companies, bunker suppliers, bunker craft operators, tanker owners, shipping / bunkering associations.

Moving forward, the Technical Committee for Bunkering and Working Group on Mass Flow Metering are working towards to launch the world first Technical Reference in early 2016. This Technical Reference is intended to support Maritime and Port Authority of Singapore (MPA) in the implementation of the Mass Flow Metering regime.

To date, more than 23 bunker tankers have been approved by MPA to use the Mass Flow Meter for bunker custody transfer. The launch of this Technical Reference will help support the mandatory use of the MFM from 1 January 2017.

“With effect from 1 January 2017, it is mandatory for bunker suppliers to use the Mass Flow Metering (MFM) system for bunker delivery of Marine Fuel Oil (MFO) in the Port of Singapore. All existing bunker tankers operating in port must be fitted with a MPA-approved MFM system for MFO delivery in the Port of Singapore by 31 December 2016. All new bunker tankers applying for Harbour Craft (Bunker Tanker) licence after 31 December 2014 will be required to be fitted with a MPA-approved MFM system for MFO delivery.”

---- Press Release by MPA on 8 April 2014 - Port of Singapore is First in the World to Mandate the Adoption of Mass Flow Metering System for Bunkering

STAKEHOLDERS DIALOGUE SESSION ON DRAFT OF THE REVISED SS 532 CODE OF PRACTICE FOR STORAGE OF FLAMMABLE LIQUIDS

The Draft of the Revised SS 532 Code of Practice for Storage of Flammable Liquids has been released for public comment from 7 August to 8 October 2015. Visit URL link below to provide your feedback:

The Stakeholders Dialogue Session on the Draft of the Revised SS 532 Code of Practice for Storage of Flammable Liquids was held on 26 August 2015 to solicit feedback during the public comment period. The dialogue session was attended by more than 120 participants from petrochemical plants, refineries, oil storage facilities, facilities processing or storing flammable and combustible liquids, associations / Institution of Fire Engineers, professional engineers and safety officers.

The comments/feedback will be evaluated by the SS 532 Working Group. Upon finalisation and approval, the revised SS 532 is planned for launch in February 2016.
2015 SPRING
DISTINGUISHED PARTNER AWARD AND MERIT AWARD

2015 SPRING DISTINGUISHED PARTNER AWARD: DR LOH WAH SING, MEMBER OF CHEMICAL STANDARDS COMMITTEE

An outstanding Singapore servant who has for 40 years contributed tirelessly to the betterment of the business community, particularly the coatings industry in which the SS 345 Paint Standard bears his signature.

- Mr Lim Eng Kiat,
 Chairman of Technical Committee for Surface Coatings

Other than chairing the TC on Precious Metal Jewellery and National WG on Fine Ceramics, his strong advocacy for standards and its applications has led him to explore other possible new standards that may be of importance to Singapore.

- Dr Keith Carpenter,
 Chairman of Chemical Standards Committee

Many of our committee members were very impressed with his openness and his ever-ready willingness to share the wealth of his knowledge.

- Dr Tay Kin Bee,
 Deputy Chairman of Chemical Standards Committee

We would also like to congratulate the following Merit Award Winners from the committees under the Chemical Standards Committee:

Mr Cheah Sin Moh	Capt. Choudhuri Rahul	Mr Aaron Kalaichelvan
Mr Koh Min Ee	Mr Richard Lai	Mr Lei Zhi Pei
Mr Collin Lim	Mr Raymond Lim	Ms Vivian Mak
Dr Dien Pandiman	Ms Ellna Poh	Mr Ong See Hee
Mr Ong Wee Liang	Mr Rajendran Ramamoorthy	Dr Yin Xi Jiang
As part of Singapore’s 25 years of Responsible Care Milestone Celebration in 2015, the Responsible Care conference, themed “Revitalize the Spirit of Responsible Care” was held from 17 to 18 March 2015.

Chairman of the Responsible Care Leadership Group, International Council of Chemical Associations, Dr Hans Jurgen Korte kick-started the conference with the keynote address. It was followed by presentations sharing by the invited overseas speakers on the development updates on Responsible Care implementation regionally and globally as well as their foresight on the importance of the programme in contributing to a sustainable chemical industry.

Speakers on the second day of conference shared with the participants from a local context perspective which covered all the six codes of Responsible Care in Singapore.

The good turnout and participation comprised not only practitioners from the chemical industry but also practitioners from related industries with similar processes. The conference had also provided an excellent opportunity for networking and exchanging of experiences.

SCIC and the Responsible Care committee would like to all the speakers and participants for their support in the Responsible Care initiatives and activities.
The SCIC Responsible Care Committee hosted a focus group discussion session with the Responsible Care practitioners from the counterpart associations on 16 Sept 2015.

The session had provided a good opportunity on exchange of experiences in the implementation of the Responsible Care programme by the different country associations.

SCIC would like to thank the following practitioners for their support in attending the session:

Mr John Roche
Head of Responsible Care
Chemical Industries Association,
United Kingdom

Mr Barry S Dyer
Chief Executive
Responsible Care New Zealand Inc

Mr Kyosuke Okano
Vice-chairman of ICCA Responsible Care Leadership Group
Chairman of Asia Pacific Responsible Care Organisation (APRO)

This is part of the efforts in building a close working relationship with counterpart chemical associations and promoting active sharing of Responsible Care updates and information in respective countries.
FORTHCOMING EVENT (OCTOBER 2015 – DECEMBER 2015)

<table>
<thead>
<tr>
<th>DATE</th>
<th>EVENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 October</td>
<td>SCIC–MOM Dialogue Session</td>
</tr>
<tr>
<td>20 October</td>
<td>15th National GHS Awareness Seminar</td>
</tr>
<tr>
<td>21 October</td>
<td>Industrial Gases Safety Seminar (IGAS) 2015</td>
</tr>
<tr>
<td>24 October</td>
<td>ChemEx 2015</td>
</tr>
<tr>
<td>29 October</td>
<td>Training Workshop On Globally Harmonized System (GHS) for Chemical users</td>
</tr>
<tr>
<td>30 October</td>
<td>Process Safety Management (PSM) Seminar</td>
</tr>
<tr>
<td>13 November</td>
<td>SCIC – Annual Cocktail Networking Session 2015</td>
</tr>
<tr>
<td>19 November</td>
<td>SCIC–NEA Dialogue Session</td>
</tr>
<tr>
<td>November 2015</td>
<td>Training Workshop On Globally Harmonized System (GHS) The Classification Course</td>
</tr>
</tbody>
</table>

Note: SCIC may change/amend the events listed above without any prior notice. For more information on the dates of these training courses, you may visit our website at www.scic.sg or contact SCIC secretariat@scic.sg